期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Advances in International Computer Science. 2022; 2: (4) ; 1-5 ; DOI: 10.12208/j.aics.20220056.

Final assembly quality prediction method of P Company based on machine learning
基于机器学习的P公司总装质量预测方法

作者: 张云川 *, 倪静, 杨怡君, 李季, 李虎

上海理工大学 上海

*通讯作者: 张云川,单位:上海理工大学 上海;

发布时间: 2022-11-29 总浏览量: 321

摘要

机器学习作为一个近期很热门的话题,被越来越多的研究所应用。为了给P公司总装质量性管理提供更好的技术支持,提出了一种基于深度置信网络(DBN)的产品质量预测模型,可通过产品装配历史数据的支持,结合现场的变化情况,判断出产品的合格率情况。以P公司某产品2019年的生产数据作为初始样本,经影响因子提取、去除噪声和筛选稳定点等处理后,形成最终样本集。利用 DBN 网络对样本数据进行特征提取,建立P公司某产品质量预测模型。结果表明:通过测试集验证,基于参数调优的 DBN模型相能准确地预测状态参数,拥有优良的稳定性。

关键词: 质量管理;深度置信网络;影响因子

Abstract

As a hot topic recently, machine learning has been applied by more and more researchers. In order to provide better technical support for the quality management of the final assembly of P Company, a product quality prediction model based on deep confidence network (DBN) is proposed. The product qualification rate can be judged by the support of the product assembly history data and the change of the site. The 2019 production data of a product of Company P is taken as the initial sample, and the final sample set is formed after processing such as impact factor extraction, noise removal and stable point screening. The DBN network is used to extract the features of sample data, and a product quality prediction model of P Company is established. The results show that the DBN model based on parameter tuning can accurately predict the state parameters and has good stability through test set verification.

Key words: quality management, deep confidence network, influence factor

参考文献 References

[1] 韩京宇, 徐立臻, 董逸生. 数据质量研究综述[J]. 计算机科学, 2008(02): 1-5+12.

[2] 梁工谦, 刘德智, 陈洪根. 质量管理学[J]. 北京:中国人民大学出版社, 2021.

[3] 阿拉杜(Alladoumbaye N. 用于数据质量管理的鲁棒机器学习算法[D]. 哈尔滨工业大学, 2021.

[4] 赵文浩, 邢香园, 王治, et al. 基于知识挖掘的航天产品装配工时定额和管理系统[J]. 计算机集成制造系统, 2021, 27(06): 1594-1604.

[5] 何俊. 齿轮箱振动特性分析与智能故障诊断方法研究[D]. 浙江大学, 2018.

引用本文

张云川, 倪静, 杨怡君, 李季, 李虎, 基于机器学习的P公司总装质量预测方法[J]. 国际计算机科学进展, 2022; 2: (4) : 1-5.