期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Advances in International Computer Science. 2023; 3: (4) ; 5-9 ; DOI: 10.12208/j.aics.20230029.

State estimation of uav based on kalman filter
基于卡尔曼滤波的旋翼无人机状态估计

作者: 潘建 *

上海星河湾双语学校 上海

*通讯作者: 潘建,单位:上海星河湾双语学校 上海;

发布时间: 2023-09-27 总浏览量: 1193

摘要

本文针对旋翼无人机状态估计的关键问题展开研究,提出了一种基于卡尔曼滤波的状态估计方法,并将其应用于无人机的飞行控制和导航系统中。首先,详细介绍了卡尔曼滤波算法的原理和数学模型,并探讨了其在无人机状态估计中的适用性。随后,本文设计并实现了一个基于卡尔曼滤波的旋翼无人机状态估计系统,并通过在真实飞机运行时采集到的传感器数据验证了其性能和有效性。结果表明,基于卡尔曼滤波的状态估计方法能够有效地融合传感器信息,减小传感器噪声和模型误差对状态估计的影响,提高了无人机状态估计的准确性和稳定性。

关键词: 旋翼无人机;状态估计;卡尔曼滤波器

Abstract

This paper delves into the crucial problem of state estimation for drones and proposes a state estimation method based on the Kalman filter, which is subsequently applied to the flight control and navigation system of Unmanned Aerial Vehicles (UAVs). Initially, a comprehensive introduction to the principles and mathematical model of the Kalman filter algorithm is provided, followed by a discussion of its applicability in UAV state estimation. Subsequently, the design and implementation of a UAV state estimation system based on the Kalman filter are presented, and its performance and effectiveness are verified using sensor data collected during real aircraft operations. The results demonstrate that the Kalman filter-based state estimation method can effectively fuse sensor information, mitigating the impact of sensor noise and model errors on state estimation, thereby significantly improving the accuracy and stability of UAV state estimation.

Key words: UAV; State Estimation; Kalman Filte

参考文献 References

[1] 杨飞.无人机在高原森林灭火中的应用[J].今日消防,2023,8(06):20-23.

[2] 王玉玲.小麦病虫害防治中植保无人机的应用[J].种子科技,2023,41(08):114-116+120.

[3] 杨帅,程红,李婷等.无人机侦察图像目标定位在军事上的应用研究[J].红外技术,2016,38(06):467-471.

[4] 萧浩鹏,彭海宇,黄华等.无人机技术在环境监测中的应用分析[J].科技资讯,2021,19(32):57-58+144. 

[5] 冯兰新,孙庆森,刘加国等.基于差分定位的室内无人机自主避障导航技术[J].机械设计与制造工程,2023,52(06):83-86.

[6] 张奕恺. GPS拒止环境下基于多传感器融合的无人机定位技术[D].天津大学,2020.

[7] 鲁军,魏峰,郝永平等.基于GPS定位的旋翼无人机追踪系统应用研究[J].自动化与仪表,2022,37(12):18-23. 

[8] 王涵,连家斌.NOKOV红外光学动作捕捉系统精度测试[J].现代信息科技,2021,5(15):113-115+118.

[9] 李方友. 基于超宽带技术的无人机室内定位系统设计与实现[D].南昌大学,2022.

[10] 董帅. 基于多传感器融合的室内移动机器人定位技术研究[D].苏州大学,2022.

[11] 王文丽,何博.基于扩展卡尔曼滤波器的无人机状态估计[J].现代信息科技,2022,6(04):118-122. 

[12] 李斌飞;崔世钢;施国英;祖林禄;. 基于无迹卡尔曼滤波的农用无人机定位研究[J]. 中国农机化学报, 2020, 41(9): 156-161.

引用本文

潘建, 基于卡尔曼滤波的旋翼无人机状态估计[J]. 国际计算机科学进展, 2023; 3: (4) : 5-9.