期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Advances in International Computer Science. 2023; 3: (4) ; 10-13 ; DOI: 10.12208/j.aics.20230030.

Improved algorithm of evidence theory based on FDR
基于FDR的证据理论改进算法

作者: 丁烈骁 *

Big Data Analytics Trading Inc. 美国

*通讯作者: 丁烈骁,单位:Big Data Analytics Trading Inc. 美国;

发布时间: 2023-09-27 总浏览量: 1312

摘要

为简化证据理论合成规则融合过程,提高其融合效果,本文应用特征降维(Feature Dimension Reduction,FDB)技术,提出一种行之有效的证据理论改进算法。实验结果表明:基于FDR的证据理论改进算法具有融合过程简单、融合效果好、类型识别率高等特点,该算法经过数据集测试后,其类型识别率升高至94%,完全符合实际应用需求。希望通过这次研究,为相关人员提供有效的借鉴和参考。

关键词: 证据理论;组合规则;样本分类

Abstract

In order to simplify the fusion process of evidence theory synthesis rules and improve its fusion effect, this paper applies Feature Dimension Reduction (FDB) technology to propose an effective evidence theory improvement algorithm. The experimental results show that the improved algorithm based on FDR evidence theory has the characteristics of simple fusion process, good fusion effect, and high type recognition rate. After being tested on the dataset, the type recognition rate of the algorithm increased to 94%, fully meeting the practical application requirements. I hope to provide effective reference and guidance for relevant personnel through this study.

Key words: Evidence theory; Combination rules; Sample classification

参考文献 References

[1] 徐吉辉,史佳辉,陈玉金,等.基于云模型和证据理论的现役装备改进方案评价[J].火力与指挥控制,2022,47(2):25-31.

[2] 高天昊,曲卫,董尧尧,等.基于改进D-S证据理论的MPAR行为状态识别方法[J].电光与控制,2022,29(12):1-6.

[3] 任荣明,谭海立,罗月静.基于改进证据理论和检测信息的混凝土桥梁服役状态评估分析[J].西部交通科技,2021(10):120-123,181.

[4] 田文杰,徐吉辉,祝娜,等.基于Z-number和改进DS证据理论的风险评估方法[J].火力与指挥控制,2023,48(1):43-49.

[5] 游昊,石恒初,杨远航,等.基于改进D-S证据理论的电网故障多源信息智能融合诊断方法[J].广东电力,2020,33(11):16-25.

引用本文

丁烈骁, 基于FDR的证据理论改进算法[J]. 国际计算机科学进展, 2023; 3: (4) : 10-13.