摘要
随着文本数据激增,高效计算文本相似度成为 NLP 关键任务。Word2Vec 作为词嵌入技术,将词语映射为低维稠密向量,捕捉语义信息,革新文本相似度计算。其核心包括连续词袋与跳字模型,通过负采样、层序 softmax 等算法优化性能。结合余弦相似度、欧氏距离等度量方法,已广泛应用于信息检索、文本分类等领域。未来,Word2Vec 与新兴技术融合,应用前景广阔。
关键词: Word2Vec;文本相似度;词嵌入;自然语言处理;语义计算
Abstract
With the surge in text data, efficiently calculating text similarity has become a key task in Natural Language Processing (NLP). Word2Vec, a word embedding technique, maps words into low-dimensional dense vectors to capture semantic information, revolutionizing text similarity calculation. Its core components include continuous bag-of-words and skip-word models, with performance optimized through techniques such as negative sampling and hierarchical softmax. By integrating metrics like cosine similarity and Euclidean distance, Word2Vec has found widespread application in information retrieval and text classification. Looking ahead, the integration of Word2Vec with emerging technologies promises a broad range of applications.
Key words: Word2Vec; Text similarity; Word embedding; Natural language processing; Semantic computation
参考文献 References
[1] 王延敏,张爱儒.基于LDA与Word2vec主题模型的草畜平衡研究主题演化与热点主题识别[J/OL].草业科学,1-29[2025-06-23].
[2] 林伟鸿,贺超波,呼增.基于EWord2Vec-TextCNN-SE的食品安全新闻文本分类[J].现代计算机,2024,30(21):156-160.
[3] 任伟建,徐海杰,康朝海,等.基于Word2vec与注意力机制的情感分析研究[J].计算机与数字工程,2024,52(10): 2991-2995+3147.
[4] 陈宇.Word2Vec新闻推荐系统设计与实现——基于Attention机制与Embedding优化[J].情报探索,2024,(10): 88-96.
[5] 孙晶.分类数据的Word2Vec与Jaccard相似度聚类方法的比较分析[J].软件,2024,45(09):49-51.
[6] 佘如辰.基于Word2Vec的我国青少年体质健康研究的可视化分析[J].文体用品与科技,2024,(16):90-93.
[7] 王捷,周迪,左洪福,等.结合Word2vec和BiLSTM的民航非计划事件分析方法[J].合肥工业大学学报(自然科学版),2024,47(07):917-924.
[8] 张昱,冯亚寒,丁千惠.融合Word2Vec词嵌入的多核卷积神经网络音乐歌词多情感分类方法[J].科学技术与工程,2024,24(20):8598-8605.