1 深圳市中安网络技术有限公司 广东深圳
2 深圳市中安无人系统研究院 广东深圳
*通讯作者:
陈锐辉,单位: 深圳市中安网络技术有限公司 广东深圳 深圳市中安无人系统研究院 广东深圳;
摘要
基于深度学习的无人系统自主导航算法优化研究旨在提高无人系统在复杂环境中的导航精度与鲁棒性。传统的导航算法在动态和不确定环境中往往表现不佳,无法有效处理实时环境变化。本文提出一种新的深度学习方法,通过训练神经网络模型来优化无人系统的路径规划和定位策略,从而提升导航效率。通过实验验证,所提算法在实际应用中比传统算法具有更高的精度和适应性。本研究为无人系统自主导航技术的发展提供了新的思路和优化方案,具有重要的理论与应用价值。
关键词: 深度学习;无人系统;自主导航;算法优化;路径规划
Abstract
The research on optimizing autonomous navigation algorithms for unmanned systems based on deep learning aims to improve the navigation accuracy and robustness of unmanned systems in complex environments. Traditional navigation algorithms often perform poorly in dynamic and uncertain environments, failing to effectively handle real-time environmental changes. This paper proposes a new deep learning method that optimizes the path planning and positioning strategies of unmanned systems by training neural network models, thereby enhancing navigation efficiency. Experimental verification shows that the proposed algorithm has higher accuracy and adaptability than traditional algorithms in practical applications. This research provides new ideas and optimization schemes for the development of autonomous navigation technology for unmanned systems, and has important theoretical and application value.
Key words: Deep learning; Unmanned systems; Autonomous navigation; Algorithm optimization; Path planning
参考文献 References
[1] 史亚锋,韩可伟,高树论,等.基于深度学习的轻量化无人机航拍小目标智能检测系统设计[J/OL].计算机测量与控制,1-9[2025-08-02].
[2] 易磊,黄哲玮,陆韬宇.基于SLAM与深度学习融合的室内无人机系统[J].现代电子技术,2025,48(09):154-160.
[3] 王子齐.基于深度学习的阵列信号增强方法研究[D].电子科技大学,2025.
[4] 刘经伟.基于深度学习的无人机目标检测与跟踪系统设计[J].信息与电脑,2025,37(06):11-13.
[5] 陈衍,丁松令,臧震宇,等.基于深度学习的无人机安防系统应用[J].电子技术,2025,54(03):196-197.
[6] 肖国德,张贺.基于深度学习的无人机输变配一体化巡检系统[J].自动化应用,2024,65(23):4-6.
[7] 冯时.基于深度学习的无人机夜视照明系统优化[J].中国照明电器,2024,(09):65-67.
[8] 陈忠财,李鑫,隋立林.基于深度学习的智能化无人机视觉系统设计[J].集成电路与嵌入式系统,2024,24(09):62-67.